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Abstract

Transcriptome-wide association studies (TWAS) integrate genome-wide association study (GWAS) data with gene expression (GE)
data to identify (putative) causal genes for complex traits. There are two stages in TWAS: in Stage 1, a model is built to impute gene
expression from genotypes, and in Stage 2, gene–trait association is tested using imputed gene expression. Despite many successes
with TWAS, in the current practice, one only assumes a linear relationship between GE and the trait, which however may not hold,
leading to loss of power. In this study, we extend the standard TWAS by considering a quadratic effect of GE, in addition to the
usual linear effect. We train imputation models for both linear and quadratic gene expression levels in Stage 1, then include both
the imputed linear and quadratic expression levels in Stage 2. We applied both the standard TWAS and our approach first to the
ADNI gene expression data and the IGAP Alzheimer’s disease GWAS summary data, then to the GTEx (V8) gene expression data and
the UK Biobank individual-level GWAS data for lipids, followed by validation with different GWAS data, suitable model checking and
more robust TWAS methods. In all these applications, the new TWAS approach was able to identify additional genes associated with
Alzheimer’s disease, LDL and HDL cholesterol levels, suggesting its likely power gains and thus the need to account for potentially
nonlinear effects of gene expression on complex traits.

Introduction
Although genome-wide association studies (GWAS) have
identified thousands of genetic loci associated with
many complex traits and diseases, a mechanistic under-
standing of the biological function of these loci remains
largely elusive. It is hypothesized that a substantial
proportion of GWAS risk variants influence complex
traits through their regulatory roles on the expression
levels of their target genes (1–3). Transcriptome-wide
association studies (TWAS), also called PrediXcan,
have become increasingly popular and important in
identifying (putative) causal genes and thus underlying
regulatory mechanisms associated with diseases and
complex traits (4,5). TWAS leverages an independent
expression quantitative trait locus (eQTL) dataset to
discover gene–trait associations for a GWAS (summary)
dataset. Specifically, first, in Stage 1, the eQTL data are
used to build a prediction model for the genetically
regulated component of each gene’s expression level
(GReX), usually using only its cis-acting genotypes/single-
nucleotide polymorphisms (SNPs) around the gene. Then
in Stage 2, the predictive model is used to impute gene
expression using the GWAS genotypic data, which is then
associated with the GWAS trait; the genes associated
with the trait are claimed to be causal under suitable
theoretical conditions.

In spite of many successes (6–8), the current standard
practice with TWAS only imputes the mean expression
level of each gene and associates it linearly with a GWAS
trait. In other words, only a linear relationship between
gene expression (GE) and a trait is considered. However,
there is no reason, except perhaps for simplicity, to
exclusively assume only a linear relationship; if there
is a nonlinear relationship between GE and the trait, the
standard TWAS is expected to lose statistical power. In
this paper, we empirically confirm this point. It is noted
that the quadratic effects of GE on a trait can be regarded
as the influence of the GE variability on the trait. In
addition to eQTL (or mean QTL), variable expression
QTL (veQTL) or more generally variance QTL (vQTL)
have been studied in the literature (9–11). In particular,
the presence of vQTL may be due to omitted SNP–SNP
or SNP–environment interactions. Thus, the quadratic
effects of GE on a trait can capture the mediating
effects of veQTL. Motivated by these considerations,
we first extend the standard TWAS (called TWAS-L) by
considering a quadratic effect, in addition to the usual
linear effect, of GE on the trait; the two new versions
including only a quadratic effect and both a linear and
a quadratic effects are called TWAS-Q and TWAS-LQ,
respectively. Then we apply the three TWAS methods to
the (individual-level) Alzheimer’s Disease Neuroimaging
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Initiative (ADNI) eQTL data and the International
Genomics of Alzheimer’s Project (IGAP) Alzheimer’s
disease (AD) GWAS (summary) data, and the (individual-
level) genotype-tissue expression (GTEx) v8 eQTL data
and UK Biobank (UKB) GWAS data for lipids, showcasing
that the extended TWAS identified additional genes
associated with AD, low-density lipoprotein (LDL) and
high-density lipoprotein (HDL) cholesterol levels. These
results were confirmed by (partial) validation with
different GWAS data, suitable model checking and
application of some more robust TWAS methods. Given
the increasing importance of TWAS and its standard
approach being applied, our findings suggest great poten-
tial with the application of our simple TWAS extension in
practice.

Results
TWAS-LQ identified additional genes associated
with AD
We applied the standard TWAS-L and its two new exten-
sions, TWAS-Q and TWAS-LQ, to the discovery sample
with the ADNI GE data in Stage 1 and the IGAP GWAS
summary data in Stage 2. We used the common SNPs
present in both the ADNI data and IGAP data to fit the
GE imputation models in Stage 1. To avoid weak IV bias,
we applied TWAS-L and TWAS-Q to the genes that had
their F-statistics >10 in Stage 1 model Eqs. (1) and (2),
respectively. We applied TWAS-LQ to the genes with an
F-statistic >10 in either Eq. (1) or (2). For TWAS-L and
TWAS-Q, we further removed the genes with only one
SNP imputing GE and GE2, respectively, and for TWAS-
LQ, we kept the genes with more than one SNP for both
GE and GE2. After screening in Stage 1, we had 1278, 235
and 1279 genes left in Stage 2 for TWAS-L, TWAS-Q and
TWAS-LQ, respectively. We identified significant genes
on the basis of the corresponding Bonferroni-adjusted P-
values.

Table 1 shows the significant genes identified by at
least one of the three methods with the discovery sample.
After the Bonferroni adjustment, TWAS-L, TWAS-Q and
TWAS-LQ identified two, one and four genes, respec-
tively. In particular, genes HLA-DQA1 and HLA-DQB1 were
missed by the standard TWAS-L but identified by the
new methods TWAS-Q and/or TWAS-LQ; HLA-DQA1 and
HLA-DQB1 genes are part of the human leukocyte antigen
(HLA) complex. They both belong to a group of major his-
tocompatibility complex (MHC) genes called MHC class II,
which play an important role in immune system. Their
contributions to AD risk have been previously discussed
in the literature (12–16). For example, a genome-wide
pathway analysis has suggested that both HLA-DQA1
and HLA-DQB1 were associated with AD risk (15). Fine
mapping of HLA region including HLA-DQA1 and HLA-
DQB1 also suggested a central role of these two genes in
late-onset AD (12,14).

We applied the same analysis pipeline as aforemen-
tioned to the validation data with the ADNI GE data

in Stage 1 and Jansen’s GWAS summary data in Stage
2 to (partially) validate the findings from the discovery
sample. We focused on the four significant genes i.e. two
genes identified by TWAS-L, one gene by TWAS-Q and
four genes by TWAS-LQ, and used the corresponding Bon-
ferroni adjustment for each method. As shown in Table 1,
all the previously significant genes were confirmed by
the validation data.

We also performed the analysis on other genes with
the validation data. The results are given in the Supple-
mentary Material.

TWAS-LQ identified additional genes associated
with lipids
We applied TWAS-L, TWAS-Q and TWAS-LQ using the
GTEx whole blood GE data in Stage 1 and UKB LDL
and HDL GWAS data in Stage 2. As before, we used the
common SNPs present in both the GTEx and UKB data to
train Stage 1 models, and we screened out the genes with
possible weak IV issues using the F-statistic threshold
>10 in Stage 1 and excluded the genes with only one SNP.
After screening, there were 4685, 161, 3815 genes left in
Stage 2 for TWAS-L, TWAS-Q and TWAS-LQ, respectively.
The results using different screening criteria are shown
in Supplementary Material.

Figure 1 shows the numbers of the significant genes
identified by the three TWAS methods for HDL (left) and
LDL (right). TWAS-LQ identified 67 (out of 3815) genes,
TWAS-L identified 87 (out of 4685) genes and TWAS-Q
only identified 4 (out of 161) genes associated with HDL.
Although the standard TWAS-L identified the largest
number of the significant genes, it is noted that TWAS-
Q and TWAS-LQ identified many additional genes other
than the ones by TWAS-L, which may bring in some new
insights. For example, there were 15 significant genes
associated with HDL only identified by TWAS-LQ, and
one was uniquely identified by TWAS-Q. In particular,
two genes, CDK2AP1 and SPDYC, were identified by
TWAS-LQ and TWAS-Q, but not by TWAS-L. CDK2AP1 has
been shown to interact with cyclin-dependent kinase 2
(CDK2) (17) and SPDYC was also found to be an activator
of CDK2 (18), whereas CDK2 plays a critical role in
cell cycle progression, and it is related to many liver
diseases, such as hepatocellular carcinoma (HCC) and
liver cancer (19,20). It is also noted that, among the
37 genes only identified by TWAS-L, 31 were not in
the analysis by TWAS-LQ (because there was no SNP
left in imputing quadratic GE). For LDL, again TWAS-
Q and TWAS-LQ could identify some additional genes,
and TWAS-LQ identified most genes among the three
methods.

We further examined the unique genes identified by
TWAS-Q (but not by TWAS-L and TWAS-LQ). For HDL
it was gene RHD. Its P-values from the three methods
were actually close at 4.95e-05, 3.92e-05 and 2.12e-04 for
TWAS-L, TWAS-Q and TWAS-LQ, respectively. Because of
the different numbers of the genes being tested and thus
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Table 1. P-values of four significant genes associated with AD from the discovery (or validation) data are outside (or inside)
parentheses

P-values in Stage 2

Gene chr TWAS-L TWAS-Q TWAS-LQ

HLA-DQA1 6 2.45e-01 4.27e-01 2.09e-09 (1.34e-05)
HLA-DQB1 6 1.05e-03 8.45e-06 (6.26e-10) 2.73e-05 (4.93e-09)
HLA-DRB5 6 4.43e-06 (1.21e-03) 2.41e-04 8.12e-08 (1.67e-08)
MS4A6A 11 2.65e-11 (5.75e-12) 1.68e-06 9.22e-11 (4.73e-11)

The significant P-values (after the Bonferroni adjustment) are bold faced.

Figure 1. Venn diagrams for the significant genes for HDL (left) or LDL
(right) identified by TWAS-L, TWAS-Q and TWAS-LQ. The numbers of the
significant genes using the discovery (UKB) or validation (GLGC) GWAS
data are shown outside or inside parentheses, respectively.

different Bonferroni adjustments for the three methods,
only the one from TWAS-Q was significant after the
Bonferroni adjustment. In addition, the P-value from
TWAS-LQ was less significant than those from the other
two methods because the imputed GE and imputed GE2

were highly correlated for this gene: the set of the three
eSNPs used for GE2 were all included in the set of the
six eSNPs for GE, and their corresponding weights were
also correlated. For LDL, the unique gene only identi-
fied by TWAS-Q was SPDYC. The P-values for TWAS-L,
TWAS-Q and TWAS-LQ were 2.13e-03, 8.28e-05 and 5.44e-
05, respectively. Again, due to the different Bonferroni
adjustments, although TWAS-LQ gave a more significant
P-value, only that of TWAS-Q was significant after the
Bonferroni adjustment.

We used the GTEx GE data in Stage 1 and the Global
Lipids Genetics Consortium (GLGC) lipid GWAS summary
data in Stage 2 to validate the previous findings. For HDL,
there were 87 genes identified by TWAS-L, 4 genes by
TWAS-Q and 67 genes by TWAS-LQ. After we refitted the
Stage 1 model, there were a few with only one SNP; after
removing these genes, we had 85, 4 and 61 genes left for
TWAS-L, TWAS-Q and TWAS-LQ, respectively. Similarly,
for LDL, there were 50, 5 and 54 genes left for the three
methods, respectively. We used the corresponding Bon-
ferroni adjustments to identify significant genes with the
validation data. Figure 1 compares the numbers of the
significant genes from the discovery and validation data.
Most of the significant genes were confirmed, includ-
ing in particular the two genes associated with HDL
(CDK2AP1 and SPDYC) uniquely identified by TWAS-LQ
and TWAS-Q.

Figure 2. Venn diagrams for the significant genes for HDL (left) or LDL
(right) after surviving the TEDE tests (i.e. without evidence for horizontal
pleiotropy).

Model checking
As shown before, TWAS-LQ identified some additional
genes. However, it is possible that some of the signif-
icant genes were due to horizontal pleiotropy of the
SNPs being used, especially given that TWAS-LQ used
more SNPs than the other two methods to impute both
linear and quadratic GE levels. Thus, we applied the
TEsting Direct Effects (TEDE) test on the significant genes
identified by TWAS-L, TWAS-Q and TWAS-LQ to detect
possible horizontal pleiotropy with the GTEx and UKB
lipids GWAS data. Specifically, we used the score test with
a modified covariance estimate (21); the details are given
in the Supplementary Material. We used the Bonferroni
correction for the TEDE tests as well. For example, TWAS-
L identified 87 significant genes associated with HDL, we
then applied the TEDE test to these 87 genes; we claimed
that there was evidence for pleiotropy of a gene’s SNPs
(being used to impute its expression) if the TEDE test gave
a P-value < 0.05/87.

Figure 2 shows the numbers of the significant genes
without pleiotropy and identified by the three TWAS
methods for HDL (left) and LDL (right). We can see that
after excluding the genes with possible pleiotropic SNP
effects, TWAS-Q and TWAS-LQ together identified 17 and
19 additional genes missed by TWAS-L for HDL and LDL,
respectively. Again, this demonstrates that incorporating
imputed quadratic GE could detect additional associated
genes.

Robust TWAS accounting for horizontal
pleiotropy
We applied the more robust linear mixed-effects (LME)
model-based TWAS-L-LME, TWASQ-LME and TWAS-LQ-
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Figure 3. Venn diagrams for the significant genes for HDL (left) or LDL
(right) identified by TWAS-L-LME, TWAS-Q-LME and TWAS-LQ-LME.

LME, as the counterparts of TWAS-L, TWAS-Q and TWAS-
LQ, to take account of possible horizontal pleiotropy.
Figure 3 shows the numbers of the significant genes
by the three LME-based TWAS methods for HDL (left)
and LDL (right) when applied to the GTEx eQTL and
UKB lipids GWAS data. Although TWAS-Q-LME did not
identify any significant genes associated with HDL or
LDL, TWAS-LQ-LME still identified some additional genes
missed by TWAS-L-LME. For example, as shown in the
right of Figure 3, there were eight genes associated with
LDL uniquely identified by TWAS-LQ-LME, including, for
instance, ITIH4, which was found to be the most char-
acteristic protein corresponding with nonalcoholic fatty
liver disease (NAFLD) progression and HCC development
in the NAFLD pigs in an HCC pig model study. A human
serum samples analysis supported this observation (22).

Similar results were obtained with the three corre-
sponding LME0 methods under the assumption of bal-
anced pleiotropy, instead of directional pleiotropy with
the above LME methods, as shown in the Supplementary
Material.

Other results
The Q–Q plots of the various methods for the real data
analyses are shown in the Supplementary Material.
In general, the Q–Q plots for TWAS-L and TWAS-LQ
were similar, showing the enrichment of significant
genes, whereas their LME counterparts showed less
enrichment. There are several possible reasons for the
enrichment of significant genes. First, accordingly to
the omnigenic model (23), there are indeed many genes
associated with a complex trait such as HDL and LDL.
Second, the imputed expression levels of physically
nearby or co-expressed genes are correlated due to
their shared eQTLs and/or co-expression, leading to
inflated statistical significance of some genes (24). In
addition, the non-independence of some genes’ imputed
expression levels and thus of their P-values violated
the independence assumption in an Q–Q plot. Third,
there is possible population structure in GWAS data.
As a reviewer suggested, we performed analysis of the
UKB individual-level data after adjusting for top genetic
principal components to check whether such enrichment
was due to population stratification. The results (shown
in the Supplementary Material) were similar to those

presenting here. Finally, in each Q–Q plot, only a selected
subset of the genes with their expression levels better
imputed (i.e. surviving the screening procedure in stage
1 with large F-statistics) were included, hence any
enrichment was only over this subset of the genes.

As shown in the Supplementary Material, we also did
a simulation study to confirm that the proposed new
TWAS methods could control type I errors satisfactorily.
In addition, as expected, TWASL, TWAS-Q and TWAS-
LQ were most powerful under the alternative hypotheses
of a gene’s expression having only a linear effect, only
a quadratic effect and both a linear and a quadratic
effects on the trait, respectively. Furthermore, as a more
general omnibus test, TWAS-LQ could maintain high
power across all the three scenarios, whereas the other
two could lose substantial power in some cases.

Discussion
In this study, we have explored possibly a quadratic rela-
tionship between GE and complex diseases/traits, going
beyond the current practice of considering only a linear
relationship in the standard TWAS. We implemented
two extensions of the standard TWAS by incorporating
a term of imputed squared gene expression (GE2), with
or without the usual linear term, in the Stage 2 model of
TWAS. We applied the extended TWAS methods, TWAS-
Q and TWAS-LQ, to the ADNI eQTL data and the IGAP
AD GWAS summary data, uncovering two genes that
would be missed by the standard TWAS (TWAS-L). These
two genes, namely HLA-DQA1 and HLA-DQB1, have been
shown to be associated with AD risk through a fine
mapping study of the HLA locus (12). We also applied
the methods to the GTEx eQTL data and UKB individual-
level GWAS data for lipids. We observed a similar pat-
tern that TWAS-Q and especially TWAS-LQ were able to
identify a number of additional genes missed by TWAS-
L, even after excluding those with potential pleiotropic
SNPs as detected by model checking, or after accounting
for pleiotropic effects in more robust LME-based TWAS
methods. We also validated the findings using differ-
ent AD and lipids GWAS data. These results suggest
that there could be nonlinear relationships between GE
and common diseases or complex traits, and accounting
for nonlinear effects in TWAS would boost statistical
power for new discovery that could give new insights
into the underlying causal mechanism. Another example
of possible application is to help increase the estimated
heritability mediated through GE, which was previously
estimated through only linear effects of GE and was
suspected to be under estimated (25).

Although there is a large literature on nonlinear or
nonadditive effects of genotypes from large-scale studies
of model organisms (26,27), such evidence is known to
be much harder to find in human studies, likely due
to lack of power. Nevertheless, thanks to the increasing
sample size, there is an emerging literature of human
studies supporting nonlinear or nonconstant effects of
genotypes on complex traits/diseases (28), in particular,
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of nonlinear effects of ApoE on cognitive decline and
AD risk (29). Perhaps even more surprisingly and thus
more convincingly, the nonlinear effects of SNPs on GE in
Stage 1 of TWAS were detected and a nonlinear machine
learning method, random forest, for some genes per-
formed better than linear model-based methods (e.g.
Lasso) in predicting/imputing GE, as reported by Grinberg
and Wallace (30). Similarly, although elastic net penal-
ized linear regression is widely used e.g. in PrediXcan
(nonlinear), random forest could sometimes outperform
elastic net penalized linear regression in imputing/pre-
dicting GE in Stage 1 of TWAS/PrediXcan, as reported
in Okoro et al (31). However, these results on nonlin-
ear effects of genotypes on GE or traits are different
from what we study here: nonlinear effects of genetically
regulated components of GE on complex traits. To our
best knowledge, we are not aware of any other study on
nonlinear effects of GE on a trait in the context of TWAS,
which is the main point of this paper.

There are a few limitations of this study. First, to
impute nonlinear GE levels in Stage 1 of TWAS, we require
the availability of individual-level eQTL data, whereas
the standard TWAS-L could be implemented using eQTL
summary data or even some pretrained Stage 1 model
as available on the FUSION website (4). However, it is
noted that, if eQTL summary data for quadratic GE
are offered and available, our methods can be directly
applied to such eQTL summary data and GWAS summary
data. The computational time of TWAS-LQ is almost
the same as that of TWAS-L. Second, we used a simple
backward variable selection scheme to fit a Stage 1
regression model, whereas other possibly more efficient
methods such as elastic net penalized linear regression,
or a nonlinear method such as random forest, can be
also applied and may further improve the performance.
Third, we only studied the quadratic effect, though in
theory there may be other functional forms of nonlinear
effects, so other more sophisticated parametric or
nonparametric models can be explored (though they will
require the availability of individual-level GWAS data,
in contrast to that of GWAS summary data required
by our methods). Fourth, population structure in GWAS
data may lead to false positives. With GWAS individual-
level data, one can adjust for population stratification
using genetic principal components or mixed models,
as we did with the UKB data. With GWAS summary
data, we did not consider this issue because presumably
suitable adjustments for population structure should
have already been applied in published GWAS summary
data. If needed, we may perform genomic control
(32,33) to adjust for population stratification with GWAS
summary data, or treat population structure as a
source of pleiotropy in TWAS or Mendelian random-
ization as in Hu et al. (34), which can be one of future
research directions. Fifth, we only focused on TWAS
with GE as the endophenotype; it is straightforward to
apply the methods to other molecular traits such as
methylation, proteomic and metabolomic QTL (xQTL)
data to investigate possibly nonlinear relationships

between their genetic components and other complex
traits/diseases. Similarly, our proposed methods can
be applied in the context of Mendelian randomization
as well (35). Sixth, as for the standard TWAS, we have
considered the use of only one eQTL dataset from
one tissue (or cell type), but it may be extended to
multiple tissues following several existing approaches
(36–38). Lastly, with the ever increasing availability
of large (individual-level) eQTL/xQTL data and GWAS
(summary) data, it is both convenient and important
to conduct empirical studies on more GWAS traits
to investigate how wide-spread are nonlinear effects,
and their specific functional forms, of GE and other
molecular/imaging endophenotypes on complex traits,
which will advance our understanding of the genetic
architecture for complex traits.

Materials and Methods
Data
eQTL data
The ADNI GE data

The ADNI is a longitudinal multicenter study designed
to develop clinical, imaging, genetic and biochemical
biomarkers for the early detection and tracking of AD.
To date the three phases of this study (ADNI-1, ADNI-GO
and ADNI-2) have recruited over 1500 adults of ages 55–
90 to participate in the research, consisting of cognitively
normal older individuals, those with early or late minor
cognitive impairment (MCI), and those with AD.

In this article, the ADNI data (39) were used in TWAS
Stage 1, containing individuals’ GE data, whole genome
sequence (WGS) data and five covariates including age,
gender, year of education, handedness and intracranial
volume (ICV). After cleaning and merging, we had a
sample size of 711. We first regressed (linear) GE on
the five covariates, then used the residuals as the ‘stan-
dardized’ (linear) GE; the linear GE and its squared term
(GE2) of 17 256 genes on the autosomes were used in
the standard and extended TWAS. For each gene, we
defined its cis-region by expanding 100 kb upstream and
downstream its coding region (i.e. from its transcrip-
tion start site (TSS) and transcription end site (TES)),
respectively. We excluded SNPs with minor allele fre-
quency (MAF) ≤ 0.05 or with missing values, or failing the
Hardy–Weinberg equilibrium test (P-value ≤ 0.001). We
then matched the SNPs with the IGAP GWAS summary
statistics and pruned the SNPs to ensure that any of
their pairwise Pearson’s absolute correlations was no
>0.8. Finally, if there were >50 SNPs left, we took the 50
SNPs with the largest absolute values of their marginal
Pearson’s correlations with GE as I1, and the 50 SNPs with
the largest absolute values of correlations with GE2 as I2

and used the SNPs in the union I1 ∪ I2 with no >100 SNPs
being used in TWAS Stage 1.

The GTEx GE data

The GTEx project is a comprehensive public resource to
study tissue-specific GE and regulation. Samples were
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collected from 54 nondiseased tissue sites across nearly
1000 individuals, primarily for molecular assays includ-
ing GE by RNA-Seq and genotyping by WGS.

We used the GTEx v8 whole blood data in TWAS
Stage 1, including 670 individuals’ GE data, WGS data
and covariates (first 5 genotype PCs, WGS sequencing
platform, WGS library construction protocol, donor sex
and PEER factors) (40). The standardized (linear) GE
and squared expression (GE2) of 19 718 genes on the
autosomes were used. The rest of the quality control
procedures were similar to that for the ADNI data
aforementioned except that we matched the GTEx SNPs
with the UKB genotypic data.

GWAS data
The IGAP AD GWAS summary data

We used the imputed Stage 1 summary statistics (with
imputation R2 ≥ 0.3) with 17 008 cases and 37 154 controls
generated by the IGAP Consortium (41) as the discovery
sample for our TWAS Stage 2 analysis.

Jansen’s AD GWAS summary data

Jansen et al. (42) conducted a large genome-wide asso-
ciation study with 71 880 cases (defined either as clini-
cally diagnosed AD or AD-by-proxy) and 383 378 controls,
including the IGAP data. We used this dataset for (partial)
validation of the findings from the IGAP GWAS dataset.

The UKB (individual-level) GWAS data

The UKB is a large-scale prospective cohort study with
phenotypic and genetic data on about 500 000 subjects.
We used the data from the individuals who were self-
reported white British and did not have any (close) rela-
tives among the set of the genotyped individuals. We took
LDL and HDL cholesterol levels as the traits of interest.
The number of SNPs is around 800 000. We used the UKB
data as the discovery sample.

The GLGC lipid GWAS summary data

We used the HDL and LDL GWAS summary statistics
generated by the GLGC (43) as the validation data for the
findings from the UKB individual-level GWAS data. The
number of SNPs is around 2 450 000.

Methods: TWAS and Extensions
GE imputation models
In Stage 1 of TWAS, we need to build a predictive model
for GE. To incorporate quadratic effects of GE on a trait,
in addition to the (linear) GE, we need to impute the GE2

level as well. If there are covariates, we may need to
first regress out their effects: for each gene, we regress
the observed GE (and GE2) on the covariates, then take
the residuals as the adjusted GE (and GE2) to be used.
Next, for each gene with (adjusted) GE level X, we fit the
following linear models

X = Zβ1 + ε1, (1)

X2 = Zβ2 + ε2, (2)

where Z is the genotype matrix of the cis-SNPs for this
gene. We estimated the regression coefficients β1 and β2

using backward step-wise variable regression with the
AIC for variable selection, though other methods (such as
elastic net penalized regression) can be equally applied.

To avoid biases due to weak instrumental variables
(IVs) (while ensuring that 1 of the 3 valid IV assumptions
holds; that is, an IV is associated with GE or GE2), we
performed the F-test on each gene in Stage 1; only those
genes with their F-statistics >10 were retained for Stage
2 analysis as to be described next.

Standard TWAS (TWAS-L) and extensions
(TWAS-Q and TWAS-LQ)
In Stage 2 of TWAS, for a given gene, we may consider
three linear models:

Y = θLX̂ + e, (3)

Y = θQX̂2 + e, (4)

Y = θLQ,1X̂ + θLQ,2X̂2 + e, (5)

where Y is the vector of GWAS trait, X̂ and X̂2 are vectors
of imputed (mean or linear) GE and imputed GE2 levels,
respectively, and e is the vector of normal noises with
mean 0. We call model Eq. (3) TWAS-L, Eq. (4) TWAS-Q
and Eq. (5) TWAS-LQ for their modeling only linear, only
quadratic and both linear and quadratic effects of GE on
the trait, respectively. TWAS-L is the standard TWAS that
has been exclusively used in practice.

With only GWAS summary data (i.e. no individual-level
genotypic data) in Stage 2, as usual, we need a reference
panel for genotypic data along with a pretrained Stage 1
model (i.e. with β̂1 and β̂2); then we perform the F-tests
to obtain the P-values in the above three models with the
corresponding null and alternative hypotheses: (i) H0,L:
θL = 0 versus θL �= 0; (ii) H0,Q: θQ = 0 versus θQ �= 0 ; and
(iii) H0,LQ: (θLQ,1,θLQ,2) = (0,0) versus (θLQ,1,θLQ,2) �= (0,0),
for TWAS-L, TWAS-Q and TWAS-LQ, respectively. Details
are given in the Supplementary Material.

Model checking and robust TWAS
We also performed model checking for TWAS via the
TEDE method (21) on the three linear models in TWAS-L,
TWAS-Q and TWAS-LQ. The TEDE method tests whether
there are any direct effects of the SNPs other than
mediated through the gene. Since the original TEDE test
applies to only the standard TWAS-L (or TWAS-Q) with
only one single term of imputed GE, we extended it to
TWAS-LQ with two (or more) imputed terms. Although
more details are given in the Supplementary Material,
here we give a brief description. First, the direct effects
of the SNPs are explicitly specified in the Stage 2 model
of TWAS: for individual i,

Yi =
∑p

j=1
αjZi,j + WT

i θ + εi, (6)
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where αj is the direct effect of the jth SNP, Zi,j is the jth
SNP for subject i, Wi is for one or more terms of imputed
GE and εi ∼ N(0, σ 2

ε ) is the error term. To test for no direct
effects, the TEDE method tests the null hypothesis H0:
α1 =α2 =... = αp = 0 (with a score test).

Alternatively, to account for possible horizontal (and
directional) pleiotropy of the SNPs while estimating the
causal effect of a gene i.e. θ , similar to MR-Egger (44),
we can treat and fit model Eq. (6) as a LME model:
we assume that αj ∼ N(μ, σ 2

α ) iid are random effects, θ

are fixed effects and εi ∼ N(0, σ 2
ε ) iid are errors. Cor-

responding to Eqs. (3) to (5), the fixed effects Wi are

(1, X̂i)
T
, (1, X̂2

i )
T
, (1, X̂i, X̂2

i )
T
, respectively (with 1 for the

intercept). We call these three corresponding LME models
as TWAS-L-LME, TWAS-Q-LME and TWAS-LQ-LME. We
can equivalently rewrite αj ∼ N(0, σ 2

α ) iid by including μ

as a component of the fixed effects as follows:

Yi =
∑p

j=1
αjZi,j + μ

∑p

j=1
Zi,j + WT

i θ + εi, (7)

where μ is the average pleiotropic effect. We fitted the
mixed effects model Eq. (7) with R package nlme to
individual-level GWAS data. A simplified version of each
model, similar to TWAS-Egger (45), can be fitted with
GWAS summary data, though we do not pursue it here.

A special case of each TWAS-L-LME, TWAS-Q-LME and
TWAS-LQ-LME is to specify balanced pleiotropy with
μ = 0, as in MR-IVW (random-effects) (46) and RAPS (47);
we call the corresponding models TWAS-L-LME0, TWAS-
Q-LME0 and TWAS-LQ-LME0, respectively. Although
such an LME0 model is more restrictive in not allowing
directional pleiotropy, it may avoid the problem in LME
(and MR-Egger) of the dependence on the orientations of
the SNPs/IVs.

Remarks
It is noted that in the extended TWAS, or more gener-
ally in IV regression, to account for nonlinear effects of
predictor or GE X on Y, in general one needs to impute
the nonlinear effects explicitly: for the quadratic effect
of X, we propose imputing or estimating E(X2|Z), which
differs from E(X|Z)2. However, in Eq. (1), under the usual
assumption of var(ε1) = σ 2

1 being constant, we have

E
(
X2|Z) = [E (X|Z)]2 + var (X|Z) = [Zβ1]2 + σ 2

1 ,

by which the quadratic GE X2 can be imputed on the basis
of the imputed X, X̂ = ˆE(X|Z), instead of imputing X2

directly in Eq. (2). In fact, by an argument of recursion,
other higher moments of GE, such as the cubic GE, can be
imputed as some higher order polynomials of X̂. On the
other hand, such an imputed quadratic (or other higher
order) GE term is also a quadratic (or other higher order)
function of genotypes Z, leading to its requirement of
using individual-level GWAS data in Stage 2 of TWAS.

It turned out that this alternative implementation did
not perform as well as using Eq. (2), perhaps due to

the former’s dependence on the sufficient adequacy of
imputing X in Eq. (1). Given often relatively small sample
sizes of an eQTL dataset, it is perhaps better to empiri-
cally impute X2 directly in Eq. (2), instead of completely
depending on using X̂in Eq. (1). Alternatively, it may
be also due to the nonconstant variance var(ε1), which
can be caused by omitted SNP–SNP or SNP–environment
interactions, leading to the presence of veQTL for model
(2). Importantly, because it is more likely (and convenient)
to have individual-level (and smaller) eQTL data but only
(larger) GWAS summary data, we recommend the use of
Eq. (2) in the previous implementation and will skip the
discussion of the alternative implementation.

Data availability
The ADNI data are available to the approved user at
the ADNI site (http://adni.loni.usc.edu). The IGAP and
Jansen’s AD GWAS summary data can be downloaded at
https://www. ebi.ac.uk/gwas/studies/GCST002245 and
https://ctg.cncr.nl/software/summary_statistics, respec-
tively. The GTEx data and UKB individual-level eQTL/G-
WAS data are available at the dbGaP (https://www.
ncbi.nlm.nih.gov/gap/) and UK Biobank (https://www.
ukbiobank.ac.uk/), respectively, to the approved user.
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